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Highlights 

 Genetic variants in ST18 and NFIA are associated with cortical thickness in AD. 

 A genetic variant in ST18 is associated with severity of AD progression.  

 ST18 and NFIA are over-expressed in AD. 

 Genetic variants in ST18 and NFIA regulate expression levels of ST18 and NFIA, 

respectively. 
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Abbreviations 

ADNI = Alzheimer’s Disease Neuroimaging Initiative; GWAS = genome-wide association 

study; MCI = mild cognitive impairment; CN = cognitive normal; SNP = single nucleotide 

polymorphism; FPKM = fragments per kilobase of transcripts per million mapped reads; 

CDR = clinical dementia rating; ROI = region of interest; IFGoperc.L = left inferior frontal 

gyrus, opercular part; IFGtriang. L= left inferior frontal gyrus, triangular part; ORBinf.L = 

left inferior frontal gyrus, orbital part; ORBsupmed. L= left superior frontal gyrus, medial 

orbital; ORBsupmed.R = right superior frontal gyrus, medial orbital; ACG.L = left anterior 

cingulate and paracingulate gyri; ACG.R = right anterior cingulate and paracingulate gyri; 

PCG.L = left posterior cingulate gyrus; PCG.R = right posterior cingulate gyrus; PHG.L = 

left parahippocampal gyrus; PHG.R = right parahippocampal gyrus; STG.L = left superior 

temporal gyrus; STG.R = right superior temporal gyrus; TPOmid.L = left temporal pole: 

middle temporal gyrus; TPOmid.R = right temporal pole: middle temporal gyrus; ITG. L= 

left inferior temporal gyrus; ITG.R = right inferior temporal gyrus; CNS= central nervous 

system 

  

                  



ABSTRACT 

To identify genetic variants influencing cortical atrophy in Alzheimer’s disease (AD), we 

performed genome-wide association studies (GWAS) of mean cortical thicknesses in 17 AD-

related brain. In this study, we used neuroimaging and genetic data of 919 participants from 

the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI), which include 268 

cognitively normal controls (NC), 488 mild cognitive impairment (MCI), 163 AD individuals. 

A total of 3,041,429 single nucleotide polymorphisms (SNPs) were tested for association 

with cortical thickness. In addition, we evaluated whether GWAS-identified SNPs (single 

nucleotide polymorphism) have a correlation with gene expression levels within the brain 

tissues of humans. The results of GWAS indicated that rs10109716 in ST18 (ST18 C2H2C-

type zinc finger transcription factor) and rs661526 in NFIA (nuclear factor I A) genes are 

significantly associated with mean cortical thicknesses of the left inferior frontal gyrus and 

left parahippocampal gyrus, respectively. The rs661526 regulates the expression levels of 

NFIA in the substantia nigra and frontal cortex and rs10109716 regulates the expression 

levels of ST18 in the thalamus. Furthermore, ST18 is highly expressed in oligodendrocytes, 

which are the CNS (central nervous system) cells that produce myelin, and NFIA is highly 

expressed in astrocytes, which play an important role in the functioning and development of 

the brain. These results suggest a crucial role of identified genes for cortical atrophy and 

could provide further insights into the genetic basis of AD.  
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1. Introduction 

Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by 

progressive loss of cognitive function and memory caused by neuronal dysfunction and death 

(Karch et al., 2014). The neurological hallmarks of AD include accumulation of senile 

plaques and neurofibrillary tangles, preceding the onset of clinical symptoms and 

contributing to clinical progression (Doraiswamy et al., 2014; Serrano-Pozo et al., 2011; 

Villemagne et al., 2013). AD has complex genetic etiology as well as environmental risk 

factors. The known risk factors of early-onset AD are three genes: APP (amyloid precursor 

protein), PSEN1 (presenilin 1), and PSEN2 (presenilin 2) (Bettens et al., 2013). For late-onset 

AD, APOE ε4 (Apolipoprotein E4) has become well known as one of the major genetic 

factors that increase the risk of AD. Recent genome-wide association studies (GWAS) 

identified more than 20 genes including BIN1 (Bridging Integrator 1), CLU (Clusterin), and 

CR1 (Complement C3b/C4b Receptor 1) that increase the risk of AD (Jun, 2010; Lambert et 

al., 2013; Wang et al., 2016). The heritability of AD is reported to be in the range of 60-80%; 

however, all the known AD-susceptibility genes, including APOE, explain only a small 

portion of genomic variance (Ridge et al., 2013). This is referred to as “missing heritability.” 

To address this problem, researchers have focused on GWAS with endophenotypes. 

Quantitative trait (also called endophenotypes) association studies have certain advantages 

over case-control studies. Traditional case-control GWAS designs that compare genotype 

frequencies between AD and control subjects require approximately 6,000 cases and 6000 

controls to obtain 80% statistical power (Hirschhorn and Daly, 2005). Furthermore, case-

control GWAS has problems concerning reliability and long-term stability of clinical 

diagnosis because diagnosis is based on behavioral characteristics and cognitive deficits that 

are typically difficult to quantify (Blanco-Gómez et al., 2016; Braskie et al., 2011; Wolthusen 

et al., 2015). Endophenotypes that are reliably measurable, stable, and continuously 

                  



distributed can improve the association studies by reducing the phenotype heterogeneity, and 

they can decrease the sample size required to achieve sufficient statistical power (Manchia et 

al., 2013; Meyer-Lindenberg and Weinberger, 2006; Potkin et al., 2009). 

Endophenotypes that are heritable and disease-associated lie along the pathway between 

disease and genotypes. Several criteria have been proposed to identify valid endophenotypes: 

disease-associated, heritable, state-independent, co-segregates with disease within families, 

and present at a higher rate within affected families (Lenzenweger, 2013a), (Lenzenweger, 

2013b). 

A variety of endophenotypes have been established in AD. For example, endophenotypes for 

AD such as age at onset, memory, cognitive performance, and amyloid and tau accumulation 

have been used (E. et al., 2007; Gomez-Isla et al., 1996; Maxwell et al., 2018; Murphy et al., 

1997; S. et al., 2008). Imaging genomics is an integrative research field that uses 

neuroimaging measures as endophenotypes and assesses the impact of genetic variation on 

neuroimaging measures. Brain structural atrophy such as hippocampal atrophy has been 

proposed as a marker for AD, and patterns of cortical atrophy have been shown to accurately 

track disease progression (Kale et al., 2019; Pini et al., 2016). Cortical thickness is one of the 

most sensitive biomarkers of cortical atrophy. Whole-brain mean cortical thickness as well as 

regional mean cortical thicknesses (e.g., inferior frontal, medial temporal, anterior and 

posterior cingulate) have been widely studied and found to be abnormally decreased in AD 

compared with cognitively normal controls (Dickerson et al., 2009; Du et al., 2007; Lerch et 

al., 2005; Querbes et al., 2009).  

The genetic and non-genetic architecture of cortical thickness are complex. Although it is 

recognized that the thickness of the human cortex decreases with age (Shaw et al., 2016), 

environmental factors such as stress can also influence the cellular components that 

contribute to cortical thinning (Wong et al., 2018). Previous studies have reported that 

                  



cortical thinning is affected pathologically in AD. Studies of post-mortem tissue have shown 

that cortical thickness is reduced in regions of the cerebral cortex that are affected 

pathologically in AD. Cortical thinning is an indicator of the burden of neurofibrillary tangles 

and neuritic plaques, and it may also be a sign of loss of the neuronal, glial, or other 

important cellular components such as neuropil volume that are related to AD (Dickerson et 

al., 2009).  

To identify the genetic architecture of cortical thickness in AD, we focused on mean cortical 

thicknesses of AD-associated cortical regions based on a reference study (Lerch et al., 2005). 

We selected 17 AD-associated ROIs (regions of interest) and performed GWAS. To 

investigate the functional role of genetic variants (Consortium et al., 2015), we performed 

expression quantitative trait locus (eQTL) analysis and differential expression analysis for 

GWAS-identified loci.  

 

2. Materials and Methods 

2.1 Study samples 

All subjects were participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

including Alzheimer’s disease (AD), mild cognitive impairment (MCI), and cognitively 

normal controls (CN) (Jack et al., 2008a; Susanne G Mueller et al., 2005; Susanne G. Mueller 

et al., 2005). Neuroimaging and genetic data of 940 participants were downloaded from the 

ADNI database (http://www.loni.ucla.edu/ADNI). Among them, 21 subjects failed at the MR 

image processing stage and were excluded from all the analyses. Demographics and 

genotypic characteristics of the final samples are listed in Table 1. 

 

2.2 Image acquisition and processing 

                  



T1-weighted baseline MR images were downloaded from the ADNI database; MRI 

acquisition has been described previously (Jack et al., 2008b). Three-dimensional T1-

weighted MRIs were processed using an automatic image analysis pipeline (CIVET) 

developed by the Montreal Neurological Institute. Briefly, we performed nonuniformity 

correction (Sled et al., 1998) and normalization to standard space using a linear transform 

(Collins et al., 1994). The registered MR images were classified into gray matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF) (Zijdenbos et al., 1996). The hemispheric GM 

and WM surfaces were extracted using the Constrained Laplacian-based Automated 

Segmentation with Proximities (CLASP) (June et al., 2005), (MacDonald et al., 2000). 

Finally, the cortical thickness was measured using the Euclidean distance between the 

corresponding vertices of the GM and WM surfaces (Lerch and Evans, 2005).  

2.3 AD-related regions of interest selection and statistical analysis 

From 68 regions of interest (ROIs) provided by the AAL (Automated Anatomical Labeling) 

atlas, we selected 17 AD-associated brain regions based on a reference study (Lerch et al., 

2005). Mean cortical thickness in each ROI, after making adjustments for age, sex, education, 

intracranial volume (ICV), and scanner magnetic field strength, was compared across disease 

groups using ANCOVA. The False Discovery Rate (FDR) method was implemented to 

address the multiple-comparisons problem. 

 

2.4 Genotyping and quality control 

We downloaded genotype data from ADNI website (http://www.loni.ucla.edu/ADNI). 

Genotyping was performed using the Illumina Human610-QuadBeadhChip in ADNI-1 and 

the Illumina HumanOmniExpress BeadChip in ADNI-GO/2 (Saykin et al., 2010), (Saykin et 

al., 2015). Un-genotyped SNPs from the ADNI-1 and ADNI-GO/2 GWAS data were imputed 

                  



separately using IMPUTE2 (Marchini et al., 2007) with the 1000 Genomes Project Phase 1 

samples as a reference panel. We downloaded genotype data of two APOE SNPs (rs429358, 

and rs7412) that define ε2, ε3, and ε4 alleles from the ADNI website. The quality-control 

procedures were performed using PLINK v1.9 software (Purcell et al., 2007), where the 

individual markers that did not satisfy the following criteria were removed from the analysis: 

genotype call rate < 95%, Hardy-Weinberg equilibrium p < 10
-6 

(in controls), and minor 

allele frequency (MAF) < 5%. Finally, 3,041,429 bi-allelic SNPs in autosomal chromosomes 

(that is, sex chromosomes, mitochondrial, and pseudo-autosomal SNPs were excluded) from 

subjects with European ancestry were used. 

 

2.5 Genome-wide association study (GWAS) 

The allelic effects for cortical thickness were measured using additive models considering 

age, sex, education, scanner field strength, APOE ε4 genotype, disease status, and ICV as 

covariates. Disease status is coded according to three variables (CN: 1, MCI: 2, and AD: 3), 

and APOE ε4 genotype represents the number of 4 copies. As education levels are highly 

correlated with the cortical thickness (Jung et al., 2018; Seo et al., 2011), we used education 

as one of covariates and we used disease status as a covariate to reduce the possible 

environmental factors specific to AD patients such as treatment effects (Hass et al., 2013). 

APOE ε4 is a well-known genetic risk factor and highly correlated with disease status 

(Farlow, 2010), we used the APOE ε4 genotype as one of the covariates in order to identify 

APOE-independent genetic loci. To estimate the multiple testing burden associated with 

analyzing cortical thickness of 17 ROIs, we used permutation test (Dudbridge and Gusnanto, 

2008), which yielded 13 independent phenotypes, and a multiple testing significance 

threshold of p < 4.17 x 10
-9

. We performed whole brain surface-based analysis for significant 

SNPs from GWAS using data from 919 GWA discovery samples and 629 replication samples. 

                  



Demographics and genotypic characteristics of the replication samples are described in 

Supplementary Table 1. The surface-based analysis of cortical thickness on a vertex-by-

vertex was performed with the SurfStat MATLAB toolbox 

(http://www.math.mcgill.ca/keith/surfstat).  

 

2.6 Association analysis with the severity of AD progression 

Cortical thickness is an AD-related imaging biomarker and can be used to track disease 

progression (Pini et al., 2016). Furthermore, cortical thinning in AD-associated brain regions 

is known to be related to memory and cognitive declines that are the prominent symptoms of 

AD (Busovaca et al., 2016; Meiberth et al., 2015; Schultz et al., 2015). We hypothesized that 

the identified cortical thickness associated variants are associated with the severity of AD 

symptoms. We tested associations between two identified independent SNPs in two loci 

(rs661526, rs10109716) from GWAS and CDR scores (Clinical Dementia Rating) using 

linear regression after applying inverse normal transformation for data normality. Bonferroni 

corrected p-value < 0.05 was considered significant. 

 

2.7 Expression quantitative trait locus (eQTL) analysis 

We conducted an expression quantitative trait locus (eQTL) analysis to identify the 

functional effect of genetic variants on gene expression. To identify eQTLs, we leveraged the 

two most significant SNPs (rs661526, rs10109716) with the corresponding gene expression 

levels from the Braineac database (http://www.braineac.org/) (Ramasamy et al., 2014). Exon-

specific expression levels in 10 brain tissues, including the hippocampus, cingulate, white 

matter, frontal, and occipital cortex were downloaded from the Braineac database, and eQTLs 

with an FDR-corrected p-value < 0.05 were considered significant.  

 

                  



2.8 Differential expression analysis  

We tested differential expression of the identified genes between dementia and control 

subjects based on the normalized gene level (FPKM (Fragments Per Kilobase of transcripts 

per Million mapped reads) values) in the public database (http://aging.brain-map.org/). The 

gene expression levels of ST18 and NFIA in the hippocampus, parietal cortex, and temporal 

cortex were downloaded from the Aging, Dementia, and TBI Study (Allen et al., 2016). We 

tested the differential expressions of the genes in each brain region between age- and sex-

matched dementia and control subjects. The differential expression analysis was performed 

using t-test and the significance level of FDR-corrected p-value < 0.05 was used. 

 

2.9 Cell-type specific brain expression  

We searched expression levels of the identified genes in mouse and human brain cells from 

the Brain RNA-Seq database (http://www.brainrnaseq.org/). This database provided gene 

expression levels across the brain cells, including neurons, oligodendrocytes, astrocytes, and 

microglia from the mouse (Zhang et al., 2014) and human brains (Zhang et al., 2016).  

 

2.10 Pathway analysis 

We conducted pathway analysis using GSA-SNP (Nam et al., 2010) to identify functional 

gene sets exhibiting the enrichment of associations in GWAS. The pathway annotations from 

the Gene Ontology (GO) resource were downloaded from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/msigdb/), version 6.2. We compiled a list of 5,126 

gene sets containing 5-200 genes in each pathway for this analysis to limit the potential for 

possible size-influenced association (Ramanan et al., 2015). SNPs that fell within 20 kb of 

the boundary of a gene were annotated to the corresponding gene on the human genome 

(hg19) coordinate.  

                  



A p-value of each SNP from GWAS summary statistics was used to estimate the gene score, 

and to avoid spurious predictions, the SNP with the second highest -log(SNP p-value) was 

used to summarize the association with each gene. Each pathway gene-set was assessed by Z-

statistics for the identification of the enriched pathways, and pathways with FDR corrected p-

value < 0.05 were considered significant. 

 

3. Results 

3.1 Mean cortical thickness in 17 AD-related ROIs 

Mean cortical thicknesses and standard deviations of 17 ROIs (regions of interest) in three 

disease groups (AD, MCI, and CN) are summarized in Table 2. The statistical results of the 

differences in cortical thickness between the three groups are summarized in Table 2; the p-

value was corrected using the FDR method. Most of the regions except for the right anterior 

cingulate and paracingulate gyri showed significant differences (FDR-corrected p-value < 

0.05) between the three disease groups.  

 

3.2 GWAS of mean cortical thickness 

To identify susceptible genes of cortical thickness, we performed GWAS on mean cortical 

thicknesses of 17 AD-associated brain regions. All phenotypes were almost normally 

distributed across the full sample (Supplementary Fig. 1). No evidence of systematic bias was 

observed in the association results (Supplementary Fig. 2). The genome-wide significant 

associations were identified in two ROIs, the left inferior frontal gyrus (orbital part), and left 

parahippocampal gyrus (Fig. 1). For the left inferior frontal gyrus, 14 SNPs exceeded the 

genome-wide significance threshold (i.e., p-value < 4.17 × 10
-9

). An intronic SNP in ST18 

(ST18 C2H2C-type zinc finger transcription factor), rs10109716 on chromosome 8, showed 

the strongest association (p-value = 2.68 x 10
-10

) (Fig. 2A). The concordance of SNPs within 

                  



the ST18 gene between imputed data and whole-genome sequencing data was very high 

(99.89%). For the left parahippocampal gyrus, rs661526, one SNP near the NFIA (nuclear 

factor I A) on chromosome 1, showed the genome-wide significant association (p-value = 

3.30 x 10
-9

) (Fig. 2B). We performed whole brain surface-based analysis of cortical thickness 

on a vertex-by-vertex basis on the brain surface to examine the effects of two significant 

SNPs (rs10109716, rs661526) on brain structural changes across all cortical regions in the 

whole brain. The most significant SNP (rs661526) in ST18 was associated with increased 

cortical thickness in the bilateral temporal lobes including the parahippocampal gyrus (within 

red circle), even after the adjustment for multiple comparisons using the random field theory 

(Supplementary Figure 3 (A)). The most significant SNP (rs10109716) in NFIA was 

associated with increased cortical thickness in a widespread pattern including the bilateral 

frontal, parietal, and temporal lobes, particularly in the inferior frontal gyrus (within red 

circle), even after the adjustment for multiple comparisons using the random field theory 

(Supplementary Figure 3 (C)). In order to replicate the findings of the two significant SNPs 

(rs10109716, rs661526) from whole brain analysis of cortical thickness, we used an 

independent data (N=629) from the ADNI cohort. In the replication study, the most 

significant SNP (rs661526) in ST18 was associated with increased cortical thickness in the 

left parahippocampal gyrus (within red circle), which showed consistent patterns in the 

discovery study (Supplementary Figure 3 (B)). The most significant SNP (rs10109716) in 

NFIA was associated with increased cortical thickness in the left inferior frontal gyrus (within 

red circle), even after the adjustment for multiple comparisons using the random field theory, 

which showed same association directions in the discovery study (Supplementary Figure 3 

(D)).  

 

3.3 Association analysis of GWAS-identified SNPs with the severity of AD 

                  



We performed association analysis of two identified independent SNPs (rs661526, 

rs10109716) in two loci with CDR scores using linear regression. The rs10109716 in ST18 on 

chromosome 8 showed statistically significant associations after Bonferroni correction 

(corrected p-value = 0.023) and rs661526 in NFIA did not show significant association with 

CDR scores (corrected p-value = 0.567). 

 

3.4 Expression quantitative trait loci (eQTL) 

To identify the functional effect of genetic variants on gene expression, we performed eQTL 

analysis. The SNPs identified from GWAS on chromosomes 1 and 8 have strong linkage 

disequilibrium (LD) with the two most significant SNPs (rs661526 and rs10109716). Our 

results showed that rs661526 on chromosome 1 significantly regulates expression levels of 

NFIA in the substantia nigra (FDR-corrected p-value = 2.90 x 10
-2

) and frontal cortex (FDR-

corrected p-value = 2.90 x 10
-2

). Expression levels of ST18 in the thalamus (FDR-corrected 

p-value = 3.90 x 10
-2

) are regulated by rs10109716 on chromosome 8 (Fig. 3) 

 

3.5 Differential expression analysis 

For the two identified cortical thickness associated genes, we performed a t-test to compare 

gene expression levels in the hippocampus, parietal cortex, and temporal cortex between 

dementia and control subjects. We found that NFIA (p-value = 0.027, log2FC=0.093) was 

differentially expressed in the right hippocampus and ST18 (p-value = 0.026, log2FC=0.32) in 

the right temporal cortex (Table 3).  

 

3.6 Cell-type specific brain expression  

We examined the expression patterns of two identified genes, ST18 and NFIA, across seven 

cells in the mouse (Supplementary Fig. 4) and 6 cells in the human brain (Supplementary Fig. 

                  



5). ST18 was expressed at a higher level in newly formed oligodendrocyte (mean FPKM = 

9.5) and oligodendrocyte (mean FPKM = 20) in the mouse and human brains, respectively. 

Moreover, NFIA was expressed at a higher level in astrocyte in both the mouse (mean FPKM 

= 19.3) and human brains (mean FPKM = 41.9). 

 

3.7 Pathway analysis 

To identify functional gene sets involved in cortical thickness atrophy, all SNP p-values from 

GWAS were used. We identified 46 gene sets displaying the enrichment of GWAS 

associations for the left inferior frontal gyrus (orbital part) and 22 gene sets for the left 

parahippocampal gyrus. The enriched GO terms included several pathways related to ion 

activity and cell organization and differentiation. More detailed results are presented in 

Supplementary Tables 2 and 3. 

 

4. Discussion 

We used mean cortical thicknesses of 17 AD-related ROIs as endophenotypes. Cortical 

thicknesses of these regions are significantly different between AD and CN (cognitive normal) 

subjects. Although statistical results in the right anterior cingulate and paracingulate gyri 

were slightly different than those reported in a previous study (Lerch et al., 2005), cortical 

thicknesses of these regions are also thinner in AD than in CN. The association between the 

selected ROIs and AD were reproducibly identified even in a different dataset. Our finding 

supports that cortical thickness of these regions is a valuable endophenotype for AD. 

A total of 15 SNPs (single nucleotide polymorphism) exceeded the genome-wide significant 

p-value (p-value < 4.17 x 10
-9

). A total of 14 of the identified SNPs are located in the genome 

regions of ST18 (ST18 C2H2C-type zinc finger transcription factor) on chromosome 8, and 

the other one SNP is located near NFIA (nuclear factor I A) on chromosome 1.  

                  



ST18 is a protein-coding gene related to DNA-binding transcription factor activity. The gene 

has previously been linked to breast cancer, chronotype measurements, and dementia (Jandrig 

et al., 2004; Jansen et al., 2019; Pottier et al., 2018; Sherva et al., 2014). For example, ST18 

has been reported to be associated with cognitive decline in AD (Sherva et al., 2014). We 

showed that ST18 was associated with CDR (Clinical Dementia Rating) scores that are 

characterized by a decline in cognitive and functional performance including memory 

performance. Our result indicates that ST18 was associated with cognitive decline in AD.  

ST18 is a transcription factor that regulates neuronal differentiation and plays an important 

role within a myelination network as a hub gene in late-onset AD (Humphries et al., 2015). 

Transcriptional changes in the myelination network were observed in AD (Miller et al., 2008), 

(Zhang et al., 2013) and demyelination is known as one of the important components of AD, 

along with Aβ plaques and neurofibrillary tangles (Sachdev et al., 2013), (Caso et al., 2016). 

Myelination results in saltatory conduction of action potentials that prominently increases the 

signal-transmission speed (Waxman, 1977), which makes it possible to integrate the 

information across highly distributed neural networks that underlie higher cognitive functions 

(Bartzokis, 2004; Fuster, 1999). Demyelination interrupts the synchronization of neuronal 

impulses and eventually destroys functional connections of cortical regions with subsequent 

neuronal dysfunction and degradation (Bartzokis, 2004). Functional disconnections of 

cortico-cortical communication, which primarily affect cognitive functions, are observed in 

the preclinical and early stages of AD (Bartzokis, 2004, 2002; BRAAK et al., 2006; Fox et al., 

1998). Later myelinating brain regions such as inferior temporal and prefrontal regions that 

are proposed to be those most susceptible to neurodegeneration in AD are the focus of the 

very first deposition of Aβ and may be more susceptible to myelin breakdown than early-

myelinating regions (BRAAK et al., 2006; Mitew et al., 2010; Thal et al., 2002). Thus, the 

                  



genetic effects that affect myelin development and breakdown will manifest as risk factors 

for AD. 

ST18 is highly expressed in oligodendrocytes, which play an important role in myelin 

formation (Dong et al., 2018). Oligodendrocytes are associated with the production of 

cholesterol and cholesterol deficits in gray matter (GM), and they can directly influence 

synaptogenesis and dendritic outgrowth (Bartzokis, 2004; Fan et al., 2002; Mauch et al., 

2001). Furthermore, iron contents in oligodendrocytes are associated with the production of 

amyloid precursor protein (APP), and iron and other metals make Aβ toxic, which is 

considered the primary pathogenic trigger of AD (Rogers et al., 2002), (Curtain et al., 2001). 

Oligodendrocyte precursor from later myelinating regions has a reduced myelin turnover, and 

thus, a diminished capacity for myelin repair (Mitew et al., 2010), (Power et al., 2002). In 

addition, rs10109716 is associated with expression levels of ST18 in the thalamus. The 

thalamus plays a significant role in episodic memory, and therefore, it can impact the 

symptomology of AD (Acosta-Cabronero and Nestor, 2014; Aggleton et al., 2016; Harding, 

2000; Van Der Werf et al., 2003). One out of the 15 GWAS-identified SNPs is located in the 

genomic region near NFIA-AS2, which encodes long non-coding RNA (Inc-RNA). Antisense 

lnc-RNAs are described from either the same genomic site or a site distant from the gene 

locus where the sense transcript counterpart is produced and either represses or activates 

transcription of the targeted protein-coding gene (Ling et al., 2013). Therefore, NFIA-AS2 

may be involved in the regulation of the expression of NFIA (Ahmetov et al., 2015). We 

suggest that rs661526, which is the most prominent SNP on chromosome 1, may be 

associated with the regulation of NFIA. Indeed, in our study, we have shown that rs661526 is 

associated with expression levels of NFIA in several brain regions including the frontal cortex 

and substantia nigra.  

                  



NFIA, a protein-coding gene, has previously been associated with bipolar disorder (Lee et al., 

2013), a disease that is known to share common clinical, epigenetics, and molecular 

pathological mechanisms with AD (Corrêa-Velloso et al., 2018). NFIA has been reported to 

be upregulated in AD compared with control subjects and showed different expression levels 

depending on the different courses of AD. Briefly, this gene is upregulated in incipient and 

moderate AD but downregulated in severe AD (Kong et al., 2017). Furthermore, NFIA plays 

an important role in normal cortical development (Bunt et al., 2017). Mutations in NFIA have 

been reported to affect brain phenotypes, including agenesis of the corpus callosum, the 

disruption of midline fusion, enlargement of ventricles, and malformation of the 

hippocampus (Gobius et al., 2016; Koehler et al., 2010; Lu et al., 2007), where the 

deformations of these brain phenotypes are significantly associated with AD (Dickerson et al., 

2001; Nestor et al., 2008; Teipel et al., 2002).  

NFIA is highly expressed in astrocytes in the brains of both humans and mice. NFIA plays a 

crucial role at the initial stage of astrocytes differentiation (Wilczynska et al., 2009). 

Astrocytes are critical to both brain functioning and development; they provide overall brain 

homeostasis, assist in neurogenesis, and determine the micro-architecture of the grey matter 

(Verkhratsky et al., 2010). Furthermore, astrocytes are specifically involved in the 

progression of neuropathological states, including neuroinflammation associated with 

neurodegenerative diseases such as AD (Wilczynska et al., 2009). These findings highlight 

the importance of NFIA in the cortical structure. However, the relationship between NFIA 

and the left parahippocampal gyrus must be tested in future studies.  

We performed pathway-based analysis and identified 68 pathways including ion-channel 

activity and cell differentiation and organization. Ion channels, including sodium, potassium, 

and calcium channels, are implicated in neurodegenerative diseases. For instance, potassium 

channels have been implicated in the onset of long-term potentiation in mammalian neurons, 

                  



which is thought to underlie learning and memory (Kidd et al., 2006). Altered calcium 

signaling accelerates A formation, which is the hallmark of AD, and A disrupts the 

calcium homeostasis that induces apoptosis in neurons (Ekinci et al., 2000), (Abramov et al., 

2004). This cycle of A generation and calcium perturbation leads to synaptic breakdown, 

cell death, and devastating memory loss (Demuro et al., 2010). AD is caused by not only the 

accumulation of A and tau but also the effects of dysfunction and loss of synapses (Forner 

et al., 2017). Synapse assembly determines the functional outputs of the nervous system 

which deterioration is the characteristic of AD, including learning, memory, and cognition 

(Batool et al., 2019; Taoufik et al., 2018). Furthermore, A and tau have been reported to 

cause synaptic dysfunctions, thereby giving rise to neurodegenerative disorders including AD 

(Forner et al., 2017).  

This study has several limitations. Although we used T1-weighted images and genetic data 

from the publicly available ADNI datasets, our sample size is moderate for a genetic 

association study. Our GWAS showed regionally heterogeneous results, and we could not 

elucidate the direct effect of genetic loci on AD-related brain regions. We performed 

functional analyses of identified SNPs and association analysis with the severity score of AD, 

but our sample size is moderate and we did not use a replication dataset. Thus, the replication 

of our findings in independent larger datasets is required. 

In conclusion, we performed GWAS of mean cortical thicknesses of 17 AD-related ROIs to 

identify novel associations in ST18 and NFIA with mean cortical thicknesses in the left 

inferior frontal gyrus and left parahippocampal gyrus, respectively. These genes were also 

associated with CDR scores. The functional roles of these genes could provide new insights 

into the brain structural atrophy, particularly in AD. 
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Figure Legends 

 

Figure 1. Manhattan plots for GWAS of mean cortical thickness. Manhattan plot for 

mean cortical thickness in the (A) left inferior frontal gyrus (orbital part) (ORBinf.L) and (B) 

left parahippocampal gyrus (PHG.L). The horizontal axis (x-axis) shows the base pair 

position of each SNP on the autosomal chromosome, and the vertical axis (y-axis) shows the 

observed –log10(p-values) for the association. The red horizontal line indicates genome-wide 

significant threshold (p-value < 4.17 × 10
-9

), and significant SNPs are colored in red. 

  

                  



 

Figure 2. Regional association plots for GWAS of mean cortical thickness. All SNPs 

within 500 kb upstream and downstream of rs10109716 on chromosome 8 (A) and rs661526 

on chromosome 1 (B) are plotted based on their GWAS –log10(p-values) of ORBinf.L and 

PHG.L, respectively. The most significant SNP is highlighted in violet. The color scale of r
2
 

values is used to label SNPs based on their degree of linkage disequilibrium with rs10109716 

and rs661526, respectively. Genes in the region are labeled with arrows denoting the 5’–3’ 

orientation. All plots were adapted from LocusZoom results. 

 

Figure 3. Effect of rs10109716 and rs661526 on ST18 and NFIA expression. Expression 

quantitative trait loci (eQTL) box plots of association between genotypes of rs10109716 with 

ST18 in thalamus (A) and rs661526 with NFIA in frontal cortex (B) and substantia nigra (C). 

The x-axes correspond to the SNP genotype, and the y-axes represent the log2 gene 

expression values.  

 

                  



Tables 

 

Table 1. Demographic information for 919 ADNI participants 

 

ADNI-1 (n=592) ADNI-GO/2 (n=327) 

Age (years) (mean  s.d.) 75.59  6.56 72.99  7.18 

Sex (male/female) 358 / 234 183 / 144 

Education (years) (mean  s.d.) 15.67  3.00 16.16  2.66 

Diagnosis (AD/MCI/CN) 139 / 286 / 167 24 / 202 / 101 

APOE ε4 (0/1/2 copies) 295 / 231 /66 194 / 109 /24 

AD: Alzheimer’s disease; MCI: mild cognitive impairment; CN: cognitively normal controls; 

APOE ε4 represents the number of 4 copies in rs429358 and rs7412 single nucleotide 

polymorphism (SNPs). 

 

                  



Table 2. Comparison of selected cortical thicknesses between different disease groups 

Abbreviation Region 
Disease Status 

P-value 
AD MCI CN 

IFGoperc.L Left Inferior frontal gyrus, opercular part 3.14 (0.16) 3.19 (0.13) 3.21 (0.14) 1.46E-06 

IFGtriang.L Left Inferior frontal gyrus, triangular part 3.04 (0.17) 3.11 (0.14) 3.13 (0.13) 8.84E-09 

ORBinf.L Left Inferior frontal gyrus, orbital part 3.24 (0.16) 3.33 (0.16) 3.35 (0.14) 5.84E-12 

ORBsupmed.L Left Superior frontal gyrus, medial orbital 3.08 (0.19) 3.17 (0.18) 3.18 (0.17) 5.47E-07 

ORBsupmed.R Right Superior frontal gyrus, medial orbital 3.14 (0.21) 3.21 (0.19) 3.22 (0.16) 1.48E-05 

ACG.L Left Anterior cingulate and paracingulate gyri 3.07 (0.18) 3.12 (0.17) 3.13 (0.18) 6.77E-04 

ACG.R Right Anterior cingulate and paracingulate gyri 3.11 (0.17) 3.13 (0.17) 3.13 (0.17) 2.33E-01 

PCG.L Left Posterior cingulate gyrus 3.11 (0.21) 3.25 (0.21) 3.29 (0.18) 2.56E-20 

PCG.R Right Posterior cingulate gyrus 3.10 (0.23) 3.26 (0.21) 3.30 (0.20) 3.76E-24 

PHG.L Left Parahippocampal gyrus 2.93 (0.19) 3.07 (0.19) 3.15 (0.16) 1.41E-36 

PHG.R Right Parahippocampal gyrus 2.95 (0.20) 3.10 (0.20) 3.17 (0.16) 2.31E-33 

STG.L Left Superior temporal gyrus 3.11 (0.17) 3.25 (0.16) 3.29 (0.12) 7.76E-30 

STG.R Right Superior temporal gyrus 3.16 (0.18) 3.28 (0.16) 3.33 (0.13) 2.10E-28 

TPOmid.L Left Temporal pole: middle temporal gyrus 3.71 (0.31) 3.87 (0.26) 3.92 (0.24) 1.29E-15 

TPOmid.R Right Temporal pole: middle temporal gyrus 3.72 (0.29) 3.87 (0.27) 3.92 (0.23) 1.39E-13 

ITG.L Left Inferior temporal gyrus 3.31 (0.25) 3.47 (0.19) 3.53 (0.17) 5.31E-25 

ITG.R Right Inferior temporal gyrus 3.36 (0.27) 3.51 (0.20) 3.56 (0.18) 7.81E-20 

 

Mean cortical thickness (mm) and standard deviation of 17 selected ROIs and difference of adjusted thickness between three groups.  

                  



AD: Alzheimer’s Disease, MCI: Mild Cognitive Impairment, CN: Cognitive Normal. P-value: FDR-corrected p-value

                  



Table 3. Results of differential expression analyses of cortical thickness associated genes 

Gene Chromosome Brain Tissues log2FC t P-value 

NFIA 1 Left hippocampus 0.141 1.786 0.083 

Right hippocampus 0.093 2.262 0.027 

Left parietal cortex 0.001 0.009 0.993 

Right parietal cortex 0.027 0.586 0.560 

Left temporal cortex -0.027 -0.276 0.784 

Right temporal cortex 0.041 0.925 0.358 

ST18 8 Left hippocampus 0.097 0.712 0.482 

Right hippocampus -0.031 -0.453 0.652 

Left parietal cortex -0.016 -0.058 0.954 

Right parietal cortex -0.679 -1.128 0.264 

Left temporal cortex -0.117 -0.539 0.594 

Right temporal cortex 0.320 2.273 0.026 

Differentially expressed results with p-value < 0.05 are indicated in bold in the table 

 

                  


